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Abstract-Based on the principle of minimum volume, an optimum shape of spine is proposed at a given 
heat duty, base temperature, and fin length. Both the thermal conductivity and heat transfer coefficient are 
temperature dependent. In this study. a power-law type waJl he+t @LX is employed. A uniform temperature 
is assumed at the fin base whereas two kinds of boundary at the fin tip are considered. First, a specified 
heat transfer rate is prescribed at the free end. Second, the outer edge of the fin is also subject to a power- 
law type surface heat flux and dissipates energy to the ambient fluids. Special cases of negligible heat 
transfer from fin tip and zero tip temperature are investigated. The temperature distributions and the 
profiles of the optimum fins are calculated for various single heat transfer modes. The results are presented 

in non-dimensionalized form for the convenience of parametric study and design analysis. 

INTRODUCTION 

EXTENDED surfaces are frequently used in heat ex- 
change devices for the purpose of increasing the heat 
transfer between a primary surface and the sur- 
rounding fluid. In many applications, optimization of 
the fins is of great interest, such as in the design of 
cooling devices on vehicles, especially aircraft. The 
investigation of exchanging the greatest amount of 
heat with the least amount of weight in the exchanger 
is very important. For a fin with uniform material, this 
research leads to the consideration of the minimum 
volume. 

The optimization problem lies either in finding the 
shape and dimension of the fins which would minimize 
the volume for a given amount of heat dissipation, or, 
alternatively, to maximize the heat dissipation for a 
given volume. For pure conducting fins, a criterion 
for optimum shape was proposed by Schmidt [l] using 
the principle of a constant heat flux. Later, Duffin [2] 
confirmed this result by applying a rigorous vari- 
ational approach. In their studies, the fin profile is 
calculated to be a parabola and has a zero thickness 
at the outer edge. The effect of internal heat generation 
on the optimum shape was first considered by Minkler 
and Rouleau [3] but a more rigorous treatment was 
given by Liu [4] for heat generations which are directly 
proportional to the temperature. An optimum shape 
of a purely radiating fin was obtained by Wilkins [5-71 
for a variety of geometries. Chung and Zhang [8, 91 
dealt with the minimization of the mass of a radiative 
fin array for which the mutual irradiation between fin- 
and base was taken into consideration. In addition, a 
great amount of literature to date has reported differ- 
ent aspects of the problem of fin optimization which 
have been investigated with many additional con- 

ditions [l&13]. However, none of them is applicable 
to boiling heat transfer. 

In the use of fins in efficient heat exchangers, such 
as boiling heat transfer, a power-law type heat transfer 
coefficient is more representative of the real phenom- 
ena. In general, the heat transfer coefficient can be 
expressed as an empirical function of the temperature 
difference between the fin and liquid given by the 
“boiling curve”. Haley and Westwater [14] used a 
numerical computation to find out an optimum shape 
of the spine fin which turns out to resemble a spade 
on a playing card. Yeh and Liaw [ 151 studied the same 
problem with a different design approach. The outer 
appearance of their optimum spine is just like a cyl- 
indrical fin, and its inner portion is nozzle-shaped. 
Employing a temperature correlated profile, a few 
authors [16, 171 investigated the optimization of fins 
with temperature dependent heat transfer coefficient. 
However, all of these works regarding boiling heat 
transfer consider negligible heat transfer from the free 
end, and thus their fin shapes have sharp edges at the 
fin tips. This causes an even more difficult manu- 
facturing problem. Recently, Chung and Iyer [18] 
have used an integral approach and derived the opti- 
mum dimensions for longitudinal rectangular fins and 
cylindrical pin fins by incorporating transverse con- 
duction. 

In practical applications, the size of a heat 
exchanger may not be so large due to space con- 
siderations. Thus, the fin length must be restricted. In 
this study, based on the principle of minimum volume 
and with the given conditions of heat duty, base tem- 
perature, and fin length, an optimum spine with heat 
transfer from the free end is proposed. The tem- 
perature dependent thermal conductivity and heat 
transfer coefficient are taken into account. By inte- 
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NOMENCLATURE 

a dimensional constant related to a 
selected heat transfer mode 
p mm2 Km”] 

Bi Biot number, h, * L/k 
Cl> Cl, c3 constants 
h heat transfer coefficient m mm2 K ‘1 
k thermal conductivity [W m ’ K -‘I 
L fin length [m] 
m power-law exponent 

e total heat transfer of a fin [w] 

4 surface heat flux of fin [w m ‘1 
Y radius of spine [m] 
i dimensionless radius, r,/L, 
T temperature [K] 
u, V transformation parameters defined in 

equations (5) and (6) 
V volume of fin [m’] 
V dimensionless volume, V/V, 
z coordinate in axial direction 

z dimensionless fin length, z/L, 
AT temperature superheat, T- T, [K]. 

Greek symbols 
U variable defined in equation (2 1) 
B variable defined in equation (27) 
& fin effectiveness 
Y parameter defined in Appendix 1 
/L variable defined in equation (26) 
I9 dimensionless temperature. 

Subscripts and superscripts 
ambient 

: fin base 
crit critical 
min minimum 
r reference 
0 fin tip 
* non-dimensional quantity. 

grating the non-linear fin equation analytically, the 
temperature distributions of the fins are obtained in 
the form of hypergeometric functions. The calculated 
fin profiles are compared with previous work. In 
addition, various single heat transfer modes are inves- 
tigated by choosing appropriate power-law 
exponents. 

THEORETICAL ANALYSIS 

An axi-symmetric fin with a temperature dependent 
thermal conductivity is cooled by the ambient fluid. 
The hept is conducted through the fin material and 
finally dissipated to the surroundings also with a tem- 
perature dependent heat transfer coefficient, which is 
a function of the temperature difference between wall 
and the ambient fluid. No heat source or sink exists 
within the fin. The ambient fluid temperature is main- 
tained at a constant temperature, T,, and a uniform 
fin base temperature of T,, is assumed. The distance 
from the spine axis to any point on its surface is 
denoted by Y(Z). 

Before solving the problem analytically, it is con- 
venient to non-dimensionahze the governing equation 
and boundary conditions. Selecting the following 
group of dimensionless variables: 

fJ*= Q 
Z 

nLk(T) ATh 
z* = - 

L 

AT ,*=!I (j- 
L ATI, 

Lq 
‘* = AT,, k(T) ’ 

the one-dimensional steady-state heat conduction FIG. 1. Coordinate system for the proposed spine 

equation inside the fin expressed in dimensionless 
form is : 

__=_ = 2r*q*. (1) 

Note that the dissipation function, q*, is both tem- 
perature and position dependent, i.e. q* = q*(z*, O), 
which is known for any specified problem. Con- 
sidering that z* is a monotonic function of 8, it may 
be written q* = q*[z*(O), 01 = q*(O). Figure 1 shows 
the physical model and coordinate system for a spine 
with an arbitrary profile. The origin of the coordinate 
system is taken at the center of the spine tip. With a 
uniform temperature at the fin base and the imposition 
of a given transfer rate at the tip, the boundary con- 
ditions are written as : 

Q* = QZ at z* = 0, (2) 

Q*=Qz 0= 1 at z* = 1. (3) 

If the fin tip surface is subject to a power-law wall 
heat flux, the boundary condition (2) then becomes : 

Q* = rg2q$ at z* = 0. (4) 
ry 
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To simplify the optimization procedure, the trans- 
formation parameters [7] are employed and modified 
as follows : 

0 
ll= 

s 
q*4 do. (5) 

% 

(6) 

The use of the transformation parameters in the fin 
optimization problem can also be found in many 
works [9, 15, 191. 

Differentiating equation (6) with respect to II, gives : 

(7) 

Substituting into equation (I) yields : 

Employing equations (1). (5) and (6), the above equa- 
tion becomes : 

r** = (4$J~3D2/5 ($);;3q*2. (9) 

A dimensionless fin volume, V*, is derived as : 

v* = J Y*= dz*. (10) 
0 

In the following derivation, the volume of a fin is 
minimized. With the aid of equations (8) and (9) and 
after some manipulations, it takes the form : 

where u,, is an integration of equation (5) from the 
superheat of fin tip (0 = 0,) to fin base (6’ = 1). From 
the theory of variational calculus, the minimum 
volume, V*, of the proposed fin can be obtained by 
solving the Euler-Lagrange equation. It yields : 

1’ = c’,LlfC,. (12) 

Imposing the boundary conditions (2) and (3) and 
with the aid of the equations (5) and (6), equation 
( 12) becomes : 

(13) 

From equations (5) and (8), the relation between the 
local position and temperature of the fin can be cal- 
culated as : 

z* = ~QtJ;-g~)l]“~ 

JL 

-2,5 

X H (1 -v,,z +u, 1 q*2d6. (14) 
00 

Accordingly, from equation (9), the radius of the opti- 
mum fin along the axis can be expressed as : 

(15) 

The principle of this optimization work is to determine 
the least volume of a fin to dissipate a given heat duty 
at a given base temperature and fin length. In this 
study, two cases are investigated. First a specified heat 
transfer rate is prescribed at the fin tip. Thus, for a 
known Qc and v,,, the tip temperature, tl,, can be 
calculated from equation (14) with the imposition of 
boundary condition (3). Second the outer edge of 
the fin is in contact with ambient fluid. Energy is 
transferred fiorn the fin tip to the environmental fluid 
for which the heat transfer coefficient behaves the 
same as that around the lateral surface of the fin. In 
this case, v,, and 0, can be obtained by solving equa- 
tions (6) and (14) under boundary conditions (4) and 
(3) simultaneously at a given Qt. The minimum vol- 
ume of the fin is rewritten in the form : 

v;,, = (16) 

Usually, the surface heat flux, q*. is dependent upon 
heat transfer modes. In the use of boiling from fins, 
q* is assumed to be attainable from a boiling curve 
since many heat transfer modes may coexist on a fin. 
Once Qz is prescribed, the temperature distribution 
can be obtained. In addition, the least volume as well 
as the geometry of the proposed fin can be determined. 

Fin effectiveness, 8. is defined as the ratio of the fin 
heat transfer rate to the heat transfer rate dissipated 
without the fin. The fin effectiveness of the optimum 
spine is derived as : 

(17) 

FIN SUBJECT TO A POWER-LAW WALL HEAT 

FLUX 

This optimization problem can be simplified if the 
wall heat flux can be approximated by a power depen- 
dence. i.e. a temperature dependent heat transfer 
coefficient is assumed. The expression of the heat 
transfer function may then be written as : 

q* = Bi@flk*m’ (18) 

where Bi is equal to h,. L/k, and h, represents the heat 
transfer coefficient at the tin base, i.e. h, = aAT: ‘. 
J’he dimensionless thermal conductivity is defined as : 

(19) 

where K,, are usually obtained from curve fitting of 
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experimental data. In some situations, a single heat 
transfer mode can be represented by an appropriate 
choice of a and m. For instance, the exponent m may 
take the values of 0.75, 1, 1.25, 3, and 4 when the fin 
is cooled due to film boiling, forced convection, free 
convection, nucleate boiling, and radiation into free 
space at zero temperature, respectively. 

The temperature distribution can be derived from 
equation (14) and has the following form : 

where 

The shape of the optimum spine becomes : 

(20) 

(21) 

(22) 

When a given heat transfer rate is prescribed at the 
fin tip, 0, can be evaluated by imposing boundary 
condition7) on equation (20). As the free end dis- 
sipates heat to the ambient fluid, the heat transfer 
from the tip can be obtained with the aid of equations 
(4), (6) and (15) and is written as : 

In this case, the two unknowns, c,, and H,, can be 
determined from non-linear equation (19), at base 
condition, and equation (23). The two-equation New- 
ton-Raphson method is used to find the roots. Since 
both the values of u0 and 8, fall in the range between 
0 and I, the initial guesses can always be given 
sufficiently close to the exact solutions. This is helpful 
in the assurances as well as acceleration of conver- 
gence. 

The expressions above can be further simplified if 
constant thermal conductivity is assumed, i.e. k* = I. 
In this case. as z’tr = 0 and 0, = 0, using boundary 
condition (3), equation (20) may be reduced in the 
form! 

For L’~ # 0 and B0 # 0, one may transform equation (20) 
into an incomplete beta function [20] which can also 
be expressed as : 

where : 

(27) 

and : 

In the above equations, Fis a hypergeometric function 
which may be expanded in a form of asymptotic series. 
In the case of u0 = 0 and B,, # 0, c3 vanishes and p is 
equal to &. The solution method is identical to that 
described in the previous case. In addition, it is noted 
that the tip temperatures can be expressed explicitly 
by v0 for m = 0, 0.2, and 2 as can be seen from equa- 
tion (23). The results are given in Appendix 1. In 
these special cases, B,, can be directly substituted into 
equation (25) to solve vO. Since f&, is eliminated and 
merely one unknown is handled, the solution method 
is apparently much easier. 

The configuration and the volume of the optimum 
fin is described by : 

y* = 2(4m+l)Qd’i. ’ ’ 
5Bi 1 

and : 

* [jl(04’n+’ -O~+‘)+o,,] ‘P’, (29) 

vzm = 16(4m+ l)Qz’A ’ ’ 
625Bi4 1 (1 -fJd (30) 

The effectiveness of the fin can be evaluated as : 

251? 1 3 I:= 
F 4(4m+ l)‘Qzi 1 (31) 

Also, in the case oft’,, = 0 and 0, = 0. Y*, V&,“iand E 
become : 

r* _ (2m+3)‘Bi_*(,,~+*,:,z,,~+,, _ 
10(4m+ 1) L (32) 

vr& = 
2x lo 3 (2m+3)5Bi2 

(4m+l)j ’ 
(33) 

and : 

5 
” (2m+3)Bi’ (34) 
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FIG. 2. Minimum volume and the corresponding tip tem- 
perature of the optimum spine with a fixed heat transfer rate 

prescribed at the free end surface. 

RESULTS AND DISCUSSION 

An optimum spine is theoretically obtained when 
the thermal conductivity and heat transfer coefficient 
are functions of temperature. For brevity, the assump- 
tions of the power-law type heat transfer coefficient 
and a constant thermal conductivity for fin material is 
employed in this section. Initially, a given heat transfer 
rate prescribed at tip surface is discussed. Figure 2 
shows the minimum volume of the optimum spine 
with the corresponding tip temperature. As the 
removal of heat, uO, from the tip increases, the require- 
ment of the dimensionless tin volume decreases at a 
given Qz. The minimum volume of the optimum fin 
reaches the lowest limit when the tip temperature is 
equal to ambient fluid temperature. This can be 
observed from the lower half of Fig. 2. In this case, 
the optimum fin fails to exist for further increase of uU 
at the given conditions. Figure 3 depicts the fin profiles 
and temperature distributions along the fin length at 

0.3 , . * I . . 
vo=o.o35 

0.2 _ Bi=O.O45 Q~=O.Ol~,/-_ - 

r* 0.11 

m=4_____ 

0.5’ ’ * . ’ ’ ’ * * ’ 
0 0.5 1 

2’ 
FIG. 3. Optimum fin profiles with the corresponding tem- 
perature distributions for L+ = 0.035 and Bi = 0.045 (m = I 

and 4). 

t’,, = 0.035. Due to symmetry, only the upper half of 
the fin is displayed. For a fin with a smaller radius at 
the free end, the temperature distribution is concave 
downward form = 4. The result is similar to the works 
of Haley and Westwater [14]. It is noted that a larger 
1.: is needed to achieve a larger Qz. Thus, in this study. 
the use of a smaller Qz is suggested for accuracy. 

Special attention is given on the tip temperatures 
for cg = 0 in Fig. 2. When there is no heat transfer 
from the fin tip, the tip temperature does not equal 
zero (0, # 0). This has been a controversial topic 
among several investigators. An optimum fin profile 
with a zero thickness at the free end and a temperature 
differing from that of the surrounding environment 
was proposed by Mikk [ 121 for m = 1 and by Sohrab- 
pour and Razani [ 171 for 7 > m > 1. However, 
Schmidt ‘[l],, Duffin [2], and Sohrabpour and Razani 
[IT] pointed out that the optimum fin profile is given 
by a parabola with vanishing thickness at the fin tip 
and 0, = 0 for uniform heat transfer coefficient 
(m = 1). The dependence of 0,, on Bi for m = 1 and 
n? = 4 is given in Fig. 4. It is seen that the tip tem- 
perature may or may not drop to zero depending on 
the axial Biot number, i.e. the length of the optimum 
fin. From equation (20), the critical Bi for L‘” = 0 and 
H, = 0 is exactly obtained as : 

r <n* ,I ‘2 
(BiLr = 2(4m+ l)iGl (35) 

The above expressions can also be obtained from 
equation (25). Details of the mathematical approach 
are given in Appendix 2. In addition to m = 1 and 
m = 4, similar trends are found for all other ms. The 
comparisons of the proposed fin profiles (H, # 0) and 
the profiles (M,, = 0) of previous work [14] for 
Bi = 0.23, 0.25, and 0.27 are displayed in Fig. 5. It is 
observed that both fins have sharp tips. The two pro- 
tiles become slenderer and tend to be identical as Bi 

80 

. 

FIG. 

0.5 

-0 0.5 1 

Bi 
4. Dependence of 0, on Bi for m = 1 and 4 and 

@ = 0.02, 0.1, and 0.2 ((3” = 0). 
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FIG. 5. Variations of radii along the length of the spines for 
NI = 1 and Bi = 0.23, 0.25, and 0.27. 

Bi 
FE. 6. TIP temperature of the optimum spines with the free 

end surfaces subject to power-law type wall heat flux. 
r 

increases In addition, by substituting t’” = 0 into 
equation (29), it may also be calculated that the opti- 
mum fin profiles have sharp edges. 

When the tip surface heat transfer into the ambient 
fluid and the heat transfer coefficient on the free end 
of a fin are the same as those on the lateral surfaces, 
the optimum fin profiles are mainly determined by Q$ 
and Bi. Figure 6 shows the dependence of 8, on Bi 
for Qz = 0.02. It is shown that the tip temperature 
increases with m at fixed Bi; however, no significant 
difference in B0 is observed for all the exponents of m 
at smaller Bi. Besides, B0 decreases as Bi increases. 
Thus, conceivably, u,, tends to zero for a larger Bi. The 
shapes and temperature distributions of the optimum 
fin for %i = 0.6 are given in Fig. 7. The tip of the 
proposed fin is sharper for a larger m. This is due to 
the fact that the heat duty is fixed and all the energy 
is dissipated through the periphery of a long spine. 
This result is also shown by Laor and Kalman [21] 
for non-zero tip temperature on an optimum spine 
with zero tip area. 

FIG. 7. The shapes and temperature distributions of the opti- 
mum spines with tip surfaces subject to power-law type wall 

heat flux. 

k2 
I 

10-l 

Bi 
FIG. 8. Dependence of c’ on Bi for Qc = 0.02 and 0.2 and 

m = I, 2, 3, and 4. 

Since the length of the optimum fin varies with the 
given conditions, it is hard to directly tell which is 
smaller from the dimensionless fin profiles or volumes. 
Thus, the volume of a cylindrical fin with the length, 
L,, and radius (at base) of the optimum spine for 
u0 = 0 and 8, = 0 is selected as a reference volume V,. 
A new dimensionless volume, P, is defined by dividing 
the volume of the optimum spine by the referzce 
volume. It is derived as : 

(36) 

It is interesting to note that P is determined by m only 
for zero tip temperature and no heat transfer from fin 
tip. The dependence of P on Bi for Q$ = 0.02 and 0.2 
is presented in Fig. 8. It is shown that as Bi increases 
P first increases to a maximum value then decreases 
to a constant. The matimum v” becomes larger and 
occurs at a smaller Bi for a smaller Qz. Note that the 
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0.15 r 

---Haley & Westwat~14] 
- Present study 

FIG. 9. Variations of radii along the length of the spines for 
~1 = 1 and Bi = 0.1, 0.15, and 0.2. 

maximum P for Qz = 0.02 is not displayed in the 
figure. However, this phenomenon is not pronounced 
for a larger m. For instance, when m = 4 and 
Qz = 0.2, P only increases with Bi and reaches a fixed 
value evaluated from equation (36) with u,, = 0 and 
B0 = 0 at a larger Bi. Hence, the effect of heat transfer 
from tip surface is important for radiation. Similar 
results are also found in nucleate boiling. 

In order to acquire a good understanding of the 
influence of Bi upon p, the optimum fin profiles for 
selected Bi are investigated. The variations of radii 
along the length of optimum spines for Bi = 0.1, 0.15, 
and 0.2 are plotted in Fig. 9. For clarity, the reference 
length L, is used and all the fin profiles are shifted to 
the right end, i.e. all the fin bases are positioned at 
z/L, = 1. These figures show that as Bi increases the 
fin profile changes from a thin truncated conical spine 
to a spine with a sharp tip. In addition, the two fin 
profiles tend to coincide at Bi = 0.2. Figure 10 illus- 
trates the fin effectiveness of the proposed fin for 

lo' 

1 To+ 
14' 

Bi 

FIG. IO. Fin effectiveness of the optimum spines for 

Qz = 0.02 and 0.2. It shows that F: decreases as Bi 
increases. In addition, Qz has little effect on R for 
Bi > 0.6. 

CONCLUSIONS 

In this study, the optimum spines with minimum 
volume are obtained at a given Qz and Bi. The main 
conclusions of the results are as follows : 

(1) 

(2) 

(3) 

(4) 

For a heat transfer rate prescribed at the surface 
of the fin tip. V,$, decreases with /3,, and the small- 
est V&, occurs at 19~ = 0. 
For the optimum fin with sharp tip (co = 0), the 
tip temperature of the optimum fin may or may 
not equal the ambient fluid temperature depend- 
ing upon the axial Biot number. 
When <he free end of the optimum fin transfers 
heat by a power-type cooling process, the required 
fin volume increases with Bi to a maximum then 
decreases to a constant value. This phenomenon 
is more pronounced for a smaller Qz. 
For a given heat duty, as the fin length increases 
the optimum fin profile changes from a truncated 
conical spine to a spine with vanishing radius at 
its tip. 
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APPENDIX 1 

For M = 0, the tip temperature can be expressed as a 
function of t;“, Qz, and Bi. After some algebraic manipu- 
lation. equation (23) reduces to : 

H” = I-0.47. (A]) 

where : 

~ ;‘= (I-0”)1;“~“5@. 

Stmilarly, for m = 0.2, 0” is derived as : 

O,, = (jO.l29@‘+ 1-0.36~)’ “‘), 

(A2) 

(A3) 

(A4) 

where 7 IS identical to the expression given in equation (A2). 

APPENDIX 2 

For v,, = 0 and 0, # 0, elimination of c3 from equation 
(25) and substitution of equation (3) gives : 

(I-Q, 4ni+l)~!‘ZF 3 22m+8 .8L ,_@z+’ 

5’ 5(4m+ I)’ 5 1 (A5) 

Using the relation [20] : 

F(a,b;c;z) = (I -_)‘-“-hF(c-a,c-b;c;_), 

equation (A5) may be rewritten in the form : 

,=I 2OQ,* I’ 
3 Bi~(4nz+l)(l -e;‘n+‘, I 

l-e?+’ 1 (A6) 

From the formula : 
l-(c)l-(c-a-b) 

F(a>b;c; 1) = r(c_a)T(c_b)’ 

the hypergeometric function in equation (A6) can be reduced 
to a simpler form, i.e. 

2m 8 F , _._. 
‘4mf1’5’ 

, _ (j.p+ I 
I 

as 0, + 0. 

(A7) 

When 0, approaches zero, it can be easily shown from equa- 
tion (A6) with the above relationship that: 

(A81 

and, for m = 2, one obtains : The result is the same as that derived in equation (35). 


